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AbstracL We show that the projection operator Ipq; ye'+')(ye'"; pql. where Ipq; ye'") is a 
squeezed state, obeys a partial differential equation in which the squeeze parameter y plays 
the role of time. It follows that related functions, such as the probability diskibution functions 
and the Wigner function are solutions of this equation. This equation will be called a pseudo- 
diffusion equation, because it resembles a diffusion equation in Minkowski space. We $ve 
general solutions of the pseudo-diffusion equaIion, fist  by the method of separation of variables 
and then by the Fourier transform method, and discuss the limitations of the latter method. The 
Fourier method is used to intmduce squeezing into the number states. the thermal light and the 
Wigner function. 

1. Iutmductiou 

In quantum optics and, more specifically, in the formalism of coherent states [1,2], the 
density operator (either for a pure or mixed state) can be mapped onto two distinct phase 
space distribution functions: (a) the P-function or covariant form 

(1) 
where Ipq) are the coherent states. The function P ( p ,  q) is non-negative, so that it can be 
interpreted as a probability density in phase space. (b) The Pc-function or contravafiaiu 
form, defined by the operator equality 

P ( P ,  4)  = ( ~ 4  I5 1 ~ 4 )  = Tr(P^l~qJ(~ql) 

can assume negative values. Throughout this paper we shall consider R = 1 and, the 
variables and operators turned dimensionless. The terms covariant and contravariant, 
which we use, were coined by Berezin [3]. These function are also known under another 
nomenclature: the covariant function is the Husimi function [4] or Q-distribution, whereas 
the contravariant form is also called the P-distribution [5]. The Wigner function W ( p ,  q )  [6] 
is related to the above two distributions as follows: 
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The multiplication by a Gaussian function followed by an integration leads to a smoothing of 
the integrand. Therefore, equations (3) and (4) display a sequential smoothing, P"(p ,  q)  + 
W ( p ,  4) + P ( p ,  q). Due to this smoothing process, the covariant P-function is always 
non-negative even if the corresponding contravariant Pc-funtion and the Wigner W-function 
assume negative values. The main physical differences between these three functions are: 
the position and linear momentum variables in the Wigner function are the eigenvalues 
of the position and momentum operators, so, a phasespace point in that function is well 
defined, as in a classical phase-space function; in the P-function a phase-space point is the 
average value of the phase space points, weighted with a Gaussian function, that lie inside a 
fundamental cell of area Ti; whereas a phase-space point in the PE-function is averaged over 
the fundamental cell with an anti-Gaussian (positive argument) weight function. This last 
function is highly singular and it does not exist as a regular function for pure states, it leads 
to ultradistributions; however, it may exist as a regular function for mixed states, although 
being, as a distribution, narrower than its other two partners [7,8]. Consequently, although 
these three functions have the same information content of a given quantum state, only the 
Q-distribution, or P-function, can be interpreted as a true probability distribution function 
(PDF). As such, it can be used to calculate a classical entropy, as defined by Wehrl [9]: 

Now, the squeezed states [6,10] are quantum states for which the variance of one of the 
two quadratures assumes a value below that obtained by using the coherent states (or the 
vacuum), whereas the variance of the other quadrature takes a higher value, such that 
the product of both variances never violates the Heisenberg uncertainty principle. Due to 
this property, it was proposed that the squeezed states could be useful in the detection of 
gravitational waves [ll], whose intensity is lower than the noise of the electromagnetic 
vacuum. The squeezed states were produced by several experimental groups [12]. So, it 
becomes significant to study their properties more thoroughly [13] and to discover new 
mathematical features for this important class of quantum states, this being the aim of the 
present paper. 

The above mappings, equations (1),(2) of j to P ( p ,  q)  can be extended to the squeezed 
states, defined as 

Ipq; C) = D ( p ,  q)S(C)lO) where C = yeiv (-CO c y c w) (6) 
and 10) is the vacuum state, which is the ground state of the dimensionless harmonic 
oscillator, with position and linear momentum written in units of (mo)' I2 and (mw)-'l2 (m 
and o are mass and angular frequency). 

is the displacement operator which generates the coherent states, and 
D ( P .  4) = exp[-i(qP- PQ)I (7) 

is the squeezing operator, where the squeeze parameter y vanishes in the coherent-state limit. 
It is useful to note that the squeeze operator for general squeezing (boost plus rotation) is 
related to those of pure boost S(y)  and rotation R(q1/2), as follows: 

S(ye'') = RW)S(Y)R+(VP) (9) 

and R(q1/2) -exp (10) 

where 

1 
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The above relation follows by using the properties 

(11) 

Replacing Ipq) by Ipq; <) in (1) and (2) defines two functions P(p,  4; 5 )  and P'(p. 4 ;  <). 
The Wehrl entropy S(<) corresponding to the squeezed states Ipq; <) can be generalized as 
follows: 

Qr = Rt(p/2)QR(v/2) = cos(w/Z)Q + sin((o/Z)P 
P, = Rt(p/2)PR(p/2) = -sin(p/Z)Q + cos(p/l)P. 

S(O = - / e p ~ ( p ,  2n q; C) In p(p, q: c). (12) 

Although the squeezed state projector operator (13) is a well-defined quantity, the derivation 
of the PDF for an arbitrary density operator, as defined in (37), is not, in general, a simple 
task. Therefore, we shall develop a formalism in order to view the squeezing process as 
being similar to the timeevolution of a diffusive one: an 'initial' arbitrary unsqueezed PDF 
is evolved by an integral equation, whose kernel is the squeeezing propagator, obtaining 
so a y-squeezed PDF, which will continue a positive function, see equation (28). This 
novel procedure is operationally simpler for handling PDFs, and especially marginal PDFs 
(to be presented elsewhere), since it permits one to extract and to take advantage of the 
symmetries of the kernel, and consequently of the PDFs. The essential point to note here is 
that an arbitrary PDF P ( p .  q ;  y) obeys a partial differential equation involving the variables 
p ,  q and y, whose formal solution permits one to obtain the integral equation. 

So, the content of the paper is organized as follows. In section 2 we derive that 
differential equation, equation (30), which is valid for any state 5,  pure or mixed. In 
section 3 we discuss its solutions using the method of separation of variables. In section 4 
we give the solution by the Fourier transform method, which yields the solutions in terms of 
a kernel that depends on y. These solutions are not as general as those that can be obtained 
by separation of variables. In subsection 4.1, we derive the kernel without rotation (p = 0) 
and in subsection 4.2 we obtain the kernel, also for rotations. In subsection 4.2 we discuss 
the symmetries of the kernel. In section 5 we apply the Fourier transform method to three 
examples. Finally, in section 6 we give a summary. 

2. The pseudo-diffusion equation 

2.I. The unrofnted squeezed states 

In this section we derive the partial differential equation (27) for the following elementary 
projector: 

n ( p . 4 :  Y )  = I P ~ . Y ) ( Y , P ~ ~  =D(P,~)S(Y)I~)(OIS~(Y)D~(P,~). (13) 
Starting from the translation properties of the displacement operator D(p, q) 

Q 5 Q - 4 = D ( P ,  q)QDt(p, 4)  

P = P - P = D(P,~)PD+(P, 4) 
(14) 

(15) 
- 

one can prove the following relations [7]: 
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where we first used the operator identity [{A, B), C] = [A, [B, C]] + (B, [A, C]) and then 
substituted equations (20)-(23) in (25) to derive (26). 

We can cast (26) in a simpler form by a change of variables: 

where h e-Zy. We see that the linear differential operator Vdepends on the three variables 
( p ,  q;  A). (Note that the symbol V is similar to those used to denote other differential 
operators, such as the D’Alembertian. 0, and the Laplacian, A). 

This differential equation for the projector II enables us to derive the same differential 
equation for distribution functions that depend linearly on II: The P-function for any 
density operator 6 (pure or mixed) is given by 

P ( P ,  q;  Y) = Tr[B WP, 4 ;  Y)] . (28) 
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Since the operator U can be pulled under the trace, the general PDF P(p, q; y) must obey 
the same differential equation (27) as the projector It 

U(p, q; A) P(p, q; A) - - - - - -- P(p, 4; A) = 0 (29) [:A (:j2 :2:i2)] 
which in the y-variable is 

The partial differential equation (29) bas been derived earlier by different methods [SI. It 
was called the pseudo-difirsion equation, because (a) it resembles the diffusion equation in 
two dimensions [14], where the parameter A plays the role of time, and (b) the coefficients 
of $ and 8 have opposite signs. Therefore, this equation describes a diffusive process in 
the p variabie and an infusive one in the q variable for all A. In this way a thin distribution 
along the p-axis gets continuously deformed into a thin distribution along the q-axis, as 
A is increased from 0 to M. For A = 1 or y = 0, the distribution becomes symmetric in 
the (q, p )  directions, if the distribution belongs to a number state, [n)(nl; in this case one 
recovers the Poisson distribution of the Glauber coherent states representation, as given in 
(74). 

2.2. The rotated squeezed states 

We now use (27) to derive a differential equation for the rotated projector n(p, q; <), with 
p # 0. The derivation is based on using equations (9) and (1 1) to rewrite [pq;  <) as follows: 

where 
IPq; 5 )  D(P, ~)R(v/~)S(Y)IO) = R(~/2)D(pv qr)S(Y)IO) = R(V/Z)lPrqr; Y)  (31) 

qr = cos((o/Z)q - sin(0,/2)p and pr = sin(q/Z)q + cos((o/2)p. (32) 

WP, 4; C) := Ipq; t)(C pq1 = R(o , /~ )  WP~,  qr; Y) R'(v/~). 

Using (31) and its conjugate, we get 

(33) 
Since the differential operator U commutes with the rotation operator R(o,/~),  we 
immediately get the differential equation for n ( p ,  q; <), by using U with the rotated 
variables (pr. q?): 

The rotated operator U is given by 
WP,, qr; A) WP, q; 5 )  = R ( V / ~ )  [WP,, qr; A) WP,, qr; y)1 Rt(rp/2) = 0 .  (34) 

U(p,, qr; A) = - - - - - -- ah 4 ap,z h2aq: 

a 1 o , ~  sin2' 6 cos2 a2 
- +)$ + (sin - 2 - 2 A2 >a,. - ----[(cos - ah 4 

where we have used 
(c)'=(cos;$+sin-- 2 ~ a 2  . 2 ~ a 2  a2 

(&)' = (cos ;: - 

=cos --+sin --+sinp- 

(36) 
2 a4 a ) 2  2ap2 z aq2 

O, a2 
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Note that for (p = 0 we recover (29) from (35). 

following useful equality for the rotated PDF 
Using equation (34) and the property of the trace, Tr(AB) = Tr(BA), we get the 

P p ( p , q ; y , d  :=Tr(p^lpq;<)((; pql) =Tr[hWpr,q,;y)] = P,(pr.qr;y.0) (37) 

where 

Finally, since br is independent of (p, q; A), the above equality (37) yields a pseudo-diffusion 
equation for the rotated distribution Pp(p, q; 5 ) :  

(39) U(Pn qr; 1) PJP, 4; Ye") = U(pn qr: A) P*(Pr, qr; y) = 0. 

It could be useful to have (39) written in terms of the y-variable: 

cosh 2y a* az  
ap* 842 

($ - y [ ( t a n h Z y  - cos(p)- + (tanh2y +cosp)- 

3. Solution by separation of variables 

The pseudo-diffusion equation (29) can be solved by the method of separation of variables, 
by writing the solution as a product of two functions, P(p,  q; A) = 0(p; A)$(q; A). where 
0 depends only on p and A, and ?b depends only on q and A. This gives 

I 
O =  UP(P, 4: A) 

p(P,q ;  A) 

(41) 
1 

Since the first term in (41) depends only on p and A, while the second term in (41) depends 
only on q and A, we conclude that each of them must be equal to a function of A only, which 
we denote by f (A). Therefore, any simultaneous solutions of the following two equations 
will yield possible solutions of the pseudo-diffusion equation: 

(42) 

where we used 
and (43) first for f (A)  
do not produce any new solutions of the pseudo-diffusion equation. 

= -$&. In the next subsection we shall study the solutions of (42) 
0, and then show that the solutions of these equations for f(A)  # 0 
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3.1. Solutions forf(h) 0 

By setting f = 0 in equation (42). we obtain a one-dimensional diffusion equation in p .  
where A/4 plays the role of time. Similarly, for f = 0, equation (43) yields a diffusion 
equation in q, but with A-'/4 playing the role of time. Hence, to get all the factorizable 
solutions of the pseudo-djffudon equation, we need only know the solurjom of the me- 
dimensional diffusion equation: 

These solutions are known in the literature [141. Typical solutions of (44) are 
+ipx-v2t 

where the h are called the 'heat wave solutions', G is the diffusion propagator and Qn(x,  t )  
are the heat polynomgs [14]. The latter functions are special cases of the generalized 
Hermite polynomials H, introduced in [lS]. In particular, the time-independent solutions 

g ( x ,  t )  = ax f b = a @ ,  + bFp0 where a ,  b = constant (46) 
correspond to the first two heat polynomials, n = 0 , l .  Clearly, products of the solutions 
(49, such as 

I 2  1 G ( p  - p'; i h )  G(q - 4'; +A-') = - exp[-A-'(p - p')' - A(q - q ) ] I n 

% ( p ;  $A) h(5; q,  ah-') 

(ap  + b)(cq + d )  a, b ,  c, d = constant 

(47) 
I 

are perfectly valid mathematical solutions of the pseudo-diffusion equation. However, in the 
present paper we are mainlyinterested in solutions which can be interpreted as normalizable 
PDFs. Therefore, we shall now look for solutions whose integral over the phase space can 
be made equal to 1, i.e. we shall require P ( p ,  q: A) E L'. To obtain such normalizable 
PDFs, the above solutions (47) must be multiplied by smooth weight functions A(q,  E )  of q 
and 1, which decay rapidly enough at infinity. Examples will be encountered later, when 
we discuss the Fourier transform method. 

We shall see in subsection 5.3 that the first product in (47) is equal to the Wigner 
function of the projector II. 

3.2. Solutions forflA) # U 

It is easy to check that the solutions of (42) for f ( h )  # 0 are given by 
A 

0 ( p ;  A) = 0&; A) eF(') where F(h) 1 dh' f ( A ' )  (48) 
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and Bo@; A), is the solution of (42) for f 0 

Similarly, we can show that the solutions of (43) are given by 

+(q: A) = ~ 4 ;  1) (50) 
with the same F ( A ) ,  as defined in (48). Thus, the products of B ( p ;  A) and +(q; A) for 
f(A) # 0 do not lead to anything new, since 

(51) e ( p ,  A)W, A) = eo(p; w o ( q :  A). 

4. Solution by Fourier transformation 

The Fourier &amform method is familiar to physicists, since it is used to calculate the 
propagators of the wave equations and the Schrodinger equation. But the limitations of this 
method are usually not emphasized in the physics literature. Applying this method in our 
case allows us to demonstrate some of its limitations, which are often overlooked. 

By taking the Fourier transform of the partial differential equation (29), we get an 
ordinary differential equation in A alone: 

where P" is the Fourier transform of P. It is easy to check that 

F(q,C; A) = A(rl,C)exp[-a(rlZA+ezA-')] (53) 
is a solution of (52) for any function A(q,B).  
immediately by taking the inverse Fourier transform 

The general solution of (29) follows 

We see that the solution (54) is simply a linear combination of the heat-wave solutions 
given in (47), with an arbitrary weight function A(q. 5).  Therefore, the Fourier transform 
method, which leads to normalized solutions (in the whole phase space) with Gaussian 
measure, excludes solutions such as the heat polynomials or their superposition, that arise 
in the method of separation of variables, but which can be normalized (not necessarily 
in the whole phase space) by introducing a convenient measure or by adequate boundary 
conditions. 

4.1. The kernel K 

By calculating P at two values, A and p, of the squeezing parameter, we can eliminate 
A(q, t), and obtain the following expression for the kernel K, which connects the Fourier 
transfoms F at two squeezing parameters: 

- 
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where 

(56) 
1 1  
A ! J  

A = A - p  and a = - - - - .  

Substituting (55) in (54), we obtain 

P ( p ,  q ;  A) = 1 -ei(qP-Sq)K(q, 2R 5 ;  A, p)P"(q,e; p).  (57) 

Equation (57) tells us that given a distribution P ( p ,  q;  p) at a certain squeezing parameter p, 
we can calculate the corresEonding distribution at another squeezing parameter A, provided 
that the Fourier transform P(q,  6 ;  p) exists. In particular, by using p = 1, we can calculate 
the squeezed PDFs from their Glauber coherent state counterpart. 

Note that in the exponent of (55) the coefficients of q2 and 5' have opposite signs. 
Therefore, the expression (55) defines a saddle-shaped surface in the three dimensional 
space, (5,  q, K ) ,  which changes continuously with the variation of the parameter h 
(0 c A cm). At A = 1 the saddle shape becomes a flat plane, defined by K = 1. 

4.2. The kernel K for the rotated squeezed states 

Since the differential equation for a general squeezing is the same as that for a pure boost, 
but with qr and pr replacing q and p ,  for the kernel of a general squeezing we get: 

K ( v ,  6 ;  A, P- V )  = K(qn er; !J, 0) 

= k h ;  A) .k(&; 8) = exp[-$($A + 5?:S)] (58) 
where A and 8 are defined in (56), and 

(59) and 

Note that (0, c)  in (59) transform exactly as (q, p )  in (32), in order to keep the following 
symplectic product invariant: 

(60) 

v, (P v, v, 
2 2 2 

qr =cos - q -sin - 6 tr = sinZ q + cos - 6 .  

7rPr - k q r  = rlP - C q .  
Substituting (59) in (58) yields 

K(q,  6 ;  A, p ,  (P) = exp[-; [(A + W q 2  +t2) + (A - 8)  [(q2 - i = 2 ) c o s ~  - 25qsin(o]}] 

which clearly reduces to (55) for (0 = 0. The kernel (61) satisfies the symmetry 
(61) 

K ( ~ . ~ ; ~ . L L , ~ D ) = K ( ~ , ) I ; A . ~ . ~ ~ - ( P ) = K ( ~ . ~ ; A - ' , ~ L - ' , ~ + ( P ) .  (62) 

In particular, we get 

K ( q ,  5 ;  A, p. 0) = K(6,  q ;  A, !J,YC) (63) 
so that a rotation by v, = IT is equivalent to the exchange of the momentum and position 
variables, as expected from (59). where qr --f -5 and tr + q. 

For p = 1 this kemel simplifies to 
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As before, we can get the distribution after a general squeezing from that before the 
squeezing, as follows: 

PP(p, 4;  A, $4 = 1 (65) 

Using (37), we can also write this equation as 

exp[i(rlp - Fq)lK(rl, F ;  A, P ,  v)Fp(rl, F :  P, v). 

Pp(P, 4;  A, P) = Pp,(Pr, qr; 0) 

= 1 2 expMrlp, - Eqr)lK(rl, 8 ;  A, ~ . O ) & ( r l ,  8 ;  P ,  0). (66) 

Since R(p/Z)ln) = exp[-in(o/2] In), the density operators BD which are diagonal in the In) 
representation, i.e. BD = pnln) (nl, will be invariant under rotations, so that (,L?D)~ = 6~ 
are independent of the angle (0. Therefore, we have 

P~,(P.~;A,~~)=P(~~),(P,,~,;~,O)=P~,(P,,~,;A,O) (67) 
which means that for such diagonal density operators the effect of general squeezing is 
obtained by first boosting by y and then rotating the contours of resultant distribution by 
an angle v/Z. 

4.3. Factorization and symmeiry properties of the kemel K 

We note that the kernel K is factorizable, as follows: 

K ( 1 . P ;  A, P )  = k(tl; A - /L)k E ;  - where k(x;  A) := e-aXzA (68) 

and that K does not depend on the difference A - p alone, since f - $ = 4 does not 
depend solely on A - f i .  

( : :> 
From (68) we see that the kernel satisfies the following symmetry property: 

K(rl, 8: 1, P) = K ( 8 ,  r l ;  A-', CL-'). 
This symmetry of K allows us to prove the following statement. 

Statement. 

(69) 

If a coherent-state distribution is symmetric in p and q 

P(P> 4;  1) = m, p; 1) 

P(P, 4: A) = P ( q ,  p; A-'). 

(70) 

(71) 

then the corresponding squeezed distribution will satisfy the following symmetry for all h: 

To prove (71), we first note that (70) implies &, I ;  1) = &, 1; 1) and therefore 

t :  A) = K ( v ,  6 ;  A, 1)F(s, I ;  1) = K O ,  rl; A-', I)&, rl; 1) 

= P"(<, 7; A-') .  (72) 
The Fourier transform of (72) finally leads to (71). 

As a corollary to the above result, we get the useful result 

P(P, 4; A, ol) = P(pr ,  qr; A) = P(qr, pr: A-') = P(q, p; A-', q) . (73) 

5. Applications and examples 

As illustrative examples of the application of the Fourier-transform solution (S7), we 
consider the following. 
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5.1. The number stazes 

The density operator for the pure states is E,, = In) (nl in the coherent-states representation 
yields a Poisson distribution 111: 

Its Fourier transform is 

where L,(z) are the Laguem polynomials. To obtain the squeezed distribution, we first 
expand L,((u2 +f2) /2)  as a sum over the products of the associated Laguerre polynomials 
L,"'(Z) [16]: 

Using (55) and (57) to squeeze the p-dependent factors, p = 1, t = 0, we get 

where we used (A - 1)/4 + 4 = (A + 1)/4 to get the first line, and then we modified the 
integral formula No 7.388.4 in [I61 to evaluate the integral. The squeezed PDF is therefore 
given by 

5.2. Squeezing of thermal light 

The distribution of thermal photons is given [17] by 

where 

is the mean number of photons. The distribution function for this density matrix is 

1 
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where the last line follows from the expression (74) for P,(pq;  1). Equation (82) shows a 
disentanglement between p and q ,  which can be attributed to the fact that thermalization 
destroys the p-q correlation. 

To calculate the PDF for squeezed thermal light, we first calculate the Fourier transform 
of P*(p, q; 1) and then multiply it with the kernel. Thus, the Fourier transform of the 
corresponding squeezed PDF is 

& v , ~ ; A ) =  K ( V , C ; A .  I%(V,C; 1 ) = e x p [ - ~ 1 r l ~ ( h + 2 7 i + i ) + ~ * ( ~ - ' + ~ +  1 ~ 1 .  
(83) 

Hence, the squeezed PDF is given by 

P&, q: A) = JTexp h+27i+l  [ h+2Ti+l  :'' ] . J"exp[ A-'+2Ti+l A-'+2Ti+l -" ] ~ 

= f ( p ,  .\)f(q, A-'). (84) 
Note that the thermal distribution after a general squeezing, including rotation, follows from 
the expression (84) by replacing p ,  q by p r ,  qr: 

P~(P, 4;  9) = f ( ~ r ,  A.)f(qr .  A-') .  (85)  

5.2.1. Increme of entropy due to squeezing. Each of the two factors in (84), f ( p ;  h) and 
f ( 4 ;  A-'), is a distribution function by itself, i.e. 

Therefore, the factorization (84) allows us to write the Wehrl entropy 191 of Sh as a sum 
of two 'sub-entropies': 

dq = - / * f ( p ;  A) In f(p; A) - / - f ( q ;  A-') In f ( q ;  A-') & Ji;; 

1 [ (A + 2Ti + I)@-' + 27i + 1) 
4 

= s(A) + s(A-') = 1 + In 

where 

(87) 

Therefore, &(A) is an even function of y ,  so that unless it is equal to a constant, it must 
have either a maximum or a minimum at y = 0 or A = 1. Physically it does not make sense 
that the entropy has a maximum at the unsqueezed situation and therefore, we can conclude, 
even without any explicit calculations, that S&) must have a minimum in A = 1. Actual 
calculations confirm our conclusions: using (88) we get 

> 0. 
d2S* E+ 1 
dA2 (2Z + 2)2 
-(A = 1) = 

This means that any squeezing must lead to an increase in the entropy of the thermal light. 
The rate of increase of entropy with A (for A close to 1) decreases as the temperature 
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increases: For T + 00 we have ii + CO, so that the rate of increase (89) goes to zero at 
infinite temperature. 

It is interesting to note that 

S * ( h ) ~ S * ( l ) = l + I n [ l + i i ] r I  (90) 

in accordance with the inequality for general Wehrl entropy, which was postulated by 
Wehrl [9] and proved by Lieb [18]. 

We note that also the entropies of the PDF P,(p,  q;  h) have a minimum at h = 1, as we 
showed in 181. 

5.3. Squeezing of the Wigner function 

The Wigner function of the squeezed projector n ( p ,  q: 5 )  is well known. It is given by 161: 

(91) 
1 

= - exp [ -h-’(p - k): - h(q - x)f] . a 
Nevertheless it is illuminating to derive this expression from the unsqueezed Wigner 

function by using Fourier transform method, particularly since our derivation will illustrate 
the use of the rotated kernel. 

First we note that the above Wigner function satisfies our pseudo-diffusion equation (39). 
This can be easily seen by explicit differentiation of the expression (91). However, a more 
interesting proof follows by applying the differential operator U on II inside the integral 
and using 34): 

V(P,, qr; A)Wn(p - k ,  4 - X :  5 )  
m 

(92) 
= L 

To apply the Fourier transform method, we start with the Wigner function for the unsqueezed 
projector 

Wn(p - k ,  q - x; 1) = - exp [ - ( p  - k)’ - (q - x)’] 
which has the following Fourier transform: 

(93) 
1 1 - exp [-a’ - <‘I 
ir a 

where we used the invariance of the scalar product 7’ + 5’ = q: + 5: under rotation. 
The later substitution was done in order to simplify the product of the rotated kernel (58) 
with W: 
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Finally, we obtain the squeezed Wigner function (91) by calculating the inverse Fourier 
transform of (99, using a change of variables, as follows: 

(96) = -exp[-k-]$-A@]= -exp[-A-'(p-k), -A(q - x ) ~ ]  

where we substituted the equality of the symplectic products (60) and used dqtdtr = dqdt, 
since the Jacobian of the rotation is 1. 

2 2 1 1 
R IT 

6. Summary 

By using commutation and anticommutation relations, we derived partial differential 
equations for the elementary projector I I ( p ,  q ;  ye") ,  for p = 0 and for the rotated states, 
p # 0. The PDF P ( p ,  q;  A, p) obeys the same differential equations. We called equation (29) 
a pseudo-diffusion equation, because it resembles a dffision equation in 'Minkowski space', 
as we argued in subsection 2.1. This equation is interesting mathematically in its own right, 
regardless of its application to squeezing. 

We solved the pseudo-diffusion equation by two different methods, separation of 
variables and Fourier transform.  the^ first method is more general, but the second one 
enables us to calculate a squeezed distribution from a given unsqueezed one. This is done 
by first calculating the Fourier transform P of the unsqueezed PDF and the" calculating the 
inverse Fourier transform of the product K P ,  of the kernel K (55) with P. We illustrated 
this procedure by three examples: we calculated the squeezed PDF of number states, thermal 
light and the Wigner function. Along the way we discussed some properties of relevant 
physical quantities, such as the Wehrl entropy [9,8]. 
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